How to Analyze Data From Multiple Animals

John Fieberg, Associate Professor

Department of Fisheries, Wildlife and Conservation Biology

- 1. We've seen how to estimate parameters describing an individual's use of space
 - RSFs
 - SSFs
- 2. We may want to know what is driving any differences among animals
- We may want to pool information across individuals to better understand population-level selection patterns

Methods for Modeling Data From Multiple Individuals

- Fit models to pooled data, ignoring the fact that we have repeated measures, but use "robust SEs" (Generalized Estimating Equations or a "cluster-level bootstrap") for inference
- Fit models to individual animals and treat the estimates as data (two-step approach)
- 3. Mixed models (aka hierarchical models, random effect models): allow parameters to vary by animal

Individual Variability is Important

- Fit models to pooled data, ignoring the fact that we have repeated measures, but use "robust SEs" (Generalized Estimating Equations or a "cluster-level bootstrap")
- 2. Fit models to individual animals and treat the estimates as data (two-step approach)
- 3. Mixed models, hierarchical models, random effect models: allow parameters to vary by animal

Causes of Individual Variability

Echanger I	Sex-specific adjust contribute to buff conditions @ Pascal Marchard, Mathieu Gar	er mouflon aga el, Gilles Bourgoi	itat selection inst summer ibao 2014 hotal iCounter 2014 August 20 Ounter 2014 Il wal 2014	We av Mandala
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Anne Loison Author Notes	Vol. 137. Supplement	The American Naturalist	June 1991
Volume 26, Issue 2 March-April 2015	Behavioral Ecology, Volume 2 https://doi.org/10.1033/beha			
OIKOS 92 5	42-554. Copenhagen 2001	GENETIC	VARIATION FOR HABITAT PREF. EVIDENCE AND EXPLANATIONS	ERENCE:
			JOHN JAENIKE AND ROSERT D. HOLT.	
Habita	selection by predators	Department of B Museum of N	liology, University of Rochester, Rochester, No atural History and Department of Systematics a Jaiversity of Kansus, Lawrence, Kansas 6045	rw York 14627; and Ecology,
asymm	etrical intraguild predat	Abstract.—Because adap it is of interest to determ	prive shifts may often be initiated by evolutional time the extent to which natural populations harb	ry changes in behavior, ser genetic variation for
Michael R.	Heithaus Heithaus, M. B asyconetrical ir	ecologically important to cause it determines the environment. A survey common, especially in a quently. Possible adapti populations include a ge a preference for it; and a information for it; and a	behaviors. Habital preference is an capeculty as regime of rotarial selection acting on loci that a of the Heretare reveals that geneeits variation intropods can unduka, the groups that have two mechanisms by which this variation could netic correlation between density-independent only density density-dependent population with which the density independent to hybrid the density independent population.	ignificant behavior, be- offect adaptation to the for habitat selection is been studied most fre- l be maintained within fitness in a habitat and lation regulation occurs.

Functional Response in Habitat Selection

Assume animals needed a constant amount of a particular resource (e.g., water).

What would you expect to see if you plotted animal-specific RSF parameters against availability of that resource?

Why do we care about individual variability?

by: Microsoft U. Online Lindowskie of Control of Control of Control of December 2 December 3 Lindow Sandor Control of Microsoft December 2 December 3 December 3 December 3 December 3 December 3 Lindow Sandor Control of Microsoft December 3				Journal of Applied Ecology Journal of Applied Ecology Adjustments in habitat selection to changin		
How do genes a important roles, behavior, Enviro their own lifetim	and the environmen Genes capture the onmental flexibility re.	t come together to shape animal behavior evolutionary responses of prior populatio Occidenta (2017) 103-025 Dot (0.00036442.001.50036	ns Overal L Losse	nduce fitness c	osts for a threate	ned see Drapeza ^{5,5} , siel Partin ¹²⁺ - Similari - Scotter, 00
LETTER	ECOLOG Intragroup competi specialisation in a p	BEHAVIORAL ECOLOGY -ORIGINAL RESE Not accounting for interindivic selection patterns: a case study	ARCH lual variability on black bear	can mask ha	ibitat	Genetic ender de Conten Guidenci d CO SPV R.S. Inciden des
Catholine I. Singgers?" Nichol Legar," Andrés A. Nichol Legar, " Antesia, "	Alexant Individual foreging specialize bring species are unclear. Or compositions for measures. P should add new percentation is all's Measure, change compe- tion of the second	Rémi Leonorisos ¹ · Martin-Hagaes St-Laurent ²		- decourse and		:ation
Tempor," Serve 1. 8. Hillschen, ¹⁴ Bichel A. Coll ¹⁴ and Temp 8. Harchell ¹⁴⁴	We tasked these opposing produ- using stable isotope analysis of	cone is will, group-bring funded inorgoons (Margor margor hand	M. Ton Towar", Gena Bootal?,	and passes of the second		
Dempon ¹ Series 1.8. Hillionen ¹⁴ Michael A. Coel ¹⁴ and Teory K. Marchall ¹⁷⁴	We tasked these opposing prod- using stable insteps analysis of aging takin. Individual througing hering a similar owned tasks to tacke partitioning within social	Coust in whit, proug-bring finaled immigroom (Amuror source bander incorpore which are to quartify individual and group of skiller size dedined with increasing group size, depits off pro- tic Our fielding support the postilation that competition promo- proper and suggest that individual Grouping specialization of	M. The Tolker**, Genz Bental?, "Description of holing on United and benefit and Construction for the second	Part of the states		12.5m (2.555 2m

Why 2-Step Methods?

- Fit models to pooled data, ignoring the fact that we have repeated measures, but use "robust SEs" (Generalized Estimating Equations or a "cluster-level bootstrap")
- 2. Fit models to individual animals and treat the estimates as data (two-step approach)
- 3. Mixed models, hierarchical models, random effect models: allow parameters to vary by animal

Two-step versus Mixed Effects Models

Independence?

What if we treat all data as independent? What problems may we encounter?

"If you can't explain it simply, you don't understand it well enough" - Albert Einstein

Two-step approach

Thought Exercise

Pool data assuming independence

Imagine trying to quantify the relative amount of time Americans and Europeans spend watching football.

Follow individuals for between 35 and 365 days. Record $y_i = 1$ if watched that day (0 otherwise).

Is the variable sample size problematic? If so, when?

Conventional wisdom:

- Non-independence may not bias parameter estimators, but...
- Estimates of uncertainty will be too small
- In reality, we need data to be 'missing completely at random' (MCAR)

MCAR: n_i (sample size for each individual) does not depend on the response of interest...a problem if those that like football tend to contribute more data!

Non-independence

Code for cluster-level bootstrap

What about measures of uncertainty when assuming independence?

- Can use cluster-level bootstrap (resample individuals)
- Generalized estimating equations (robust, sandwich standard errors)

> head(bdat)

	concat	fullan	Timecount2	cdate	Seario	Bearitmean	hr	Sex	Season	cat	log, move	mean.	5ex2	100, hr	Ifall	15Unmer
1	402110402740ay	96	1	4/6/2010	4021	402110	60	F	Spring	Day	2.939	2010	Fem	4.09	FALSE	FALSE.
2	402110402750wy	97	3	4/7/2010	4021	402110	-54	F	spring	Day	0.525	2010	Fem	3.99	FALSE	FALSE
3	402110402770av	99	7	4/9/2010	4021	402110	34		50c inc	Day	-0.596	2010	res	3, 53	FALSE	FALSE
-4	402110402800ay	102	13	4/12/2010	4021	402110	37	F	Spring	Day	-0.375	2010	Fem	3.61	FALSE	EALSE
5	402110402810av	103	15	4/13/2010	4021	402110	37	F	secing	Dav	-0.639	2010	Eem	3.61	FALSE	FALSE
6	402110402820ay	104	17	4/14/2010	4021	402110	41		spring	Day	0.540	2010	res	3.71	FALSE	FALSE

st<-5000	
a.hat<-matrix(NA, nboot, 6)	
is<-unique(bdat\$BearIDYear)	
iids<-length(uids)	
(i in l:nboot) {	
reasample individuals	
<pre>ids.boot<-data.frame(BearIDYear-sample(uids, n.uids, replace-T))</pre>	
Take all obs from these individuals	
bootdat<-merge(ids.boot,bdat)	
Now fit im and null off coefficients	
Im boot fits-lm(log heart rate-log move rate+Season, data-bootdat)	
beta.hat[i,]<-coef(lm.boot.fit)	
	<pre>ic=lood ic=lood iis=class(LidealContent) iis=class(LidealContent) iis=class(LidealContent) iis=loods(class(Class(Class(LidealContent))) # Take all is from these infiridates boots(class(LidealContent) boots(class(LidealContent)) # New fit is and pull off coefficients battors(LidealContent) technologiametrates(LidealContent)</pre>

Generalized estimating equations

Generalized linear models

Assume Y comes from a distribution in the exponential family

- Gaussian
- Poisson (count data)
- Bernoulli (binary data)

Linear model applies to some transformation of the mean:

- $\blacktriangleright \eta(\mu) = \beta_0 + x_1\beta_1 + \dots x_p\beta_p$
- Poisson log(µ)
- Bernoulli: logit(μ) = log(μ/(1 μ))

What are Generalized Estimating Equations (GEE)?

 Natural extension of generalized linear models to correlated data.

Generalized Linear Models

Generalized Estimating Equations (GEE)

GLM: $\hat{\beta}_{MLE}$ solves: $\sum_{i=1}^{n} \frac{\partial \mu_i}{\partial \beta} V_i^{-1} (Y_i - \mu_i) = 0.$

$$\blacktriangleright \mu_i = E[Y_i|X_i] = f(X_i, \beta)$$

- $\bigvee_{i} = Var[Y_i|X_i] = g(\mu_i)$
- $\frac{\partial \mu_i}{\partial \beta}$ is a 1xp vector of derivatives of μ_i with respect to β [$p = dim(\beta)$].

Logistic regression:

$$\blacktriangleright \mu_i = E[Y_i|X_i] = \exp(X_i\beta)/[1 + \exp(X_i\beta)]$$

 $\blacktriangleright V_i = Var[Y_i|X_i] = \mu_i(1 - \mu_i).$

GEE: $\hat{\beta}$ solves: $\sum_{i=1}^{n} \frac{\partial \mu_i}{\partial \beta} V_i^{-1}(\alpha) (Y_i - \mu_i) = 0.$

- Y_i = (Y_{i1}, Y_{i2}, ... Y_{imi}), a vector of responses for individual i
- ^{\u03c6}/_{\u03c6} is a m_ixp matrix of first derivatives
- V_i(α) = A^{1/2}_iR_i(α)A^{1/2}_i is the variance-covariance matrix for individual i
- A_i = variance model, typically based on exponential family (e.g., μ_i(1 – μ_i) for binary data).
- ► R_i(α) = working correlation model that describes within subject correlation.

Fitting GEEs in R

library geepack:

geeglm(y ~ x, family= , corstr =) Options:

- family: poisson(), binomial(), gaussian(), Gamma(), quasipoisson(), quasibinomial()
- crostr: independence, exchangeable, ar1

If data are MCAR:

 $\hat{\beta}$ will be asymptotically unbiased (think large no. of clusters) even when the correlation structure (and model of the variance) is mis-specified.

Works best with lots of similarly sized clusters.

Generalized Estimating Equations

Notes: cluster(CollarID), method="breslow", robust=TRUE (and much larger SEs!)

Two-Step Approach

Step 1: fit models to individuals

 $f_i^u(s) \propto \exp(elev(s)\beta_i + popD(s)\gamma_i + forest(s)\tau_i)$

Step 2: Do statistics on $(\hat{\beta}_i, \hat{\gamma}_i, \hat{\tau}_i)$

- calculate their variance/covariance (biased high due to sampling variability)
- relate coefficients to animal-specific characteristics (e.g., age, sex) using say lm
- plot coefficients against availability to explore functional responses

Fit models to individual animals

- Often a useful starting point (exploratory data analysis)
- Fewer parametric assumptions (no distributional assumptions about random effects)

For justification of 2-step approach, see: Murtaugh, P. A. (2007). Simplicity and complexity in ecological data analysis. Ecology, 88(1), 56-62.

In the context of step-selection functions:

- Craiu, R. V., T. Duchesne, D. Fortin, and S. Baillargeon (2011). Conditional logistic regression with longitudinal follow-up and individual-level random coefficients: A stable and efficient two-step estimation method. Journal of Computational and Graphical Statistics 20, 767-784.
- Craiu, R. V., T. Duchesne, D. Fortin, and S. Baillargeon (2016). TwoStepCLogit: Conditional Logistic Regression: A Two-Step Estimation Method. R package version 1.2.5.

Two-step Approach

- Quick and easy using the amt package in conjunction with tidyverse in R
- See FisherRSF.R and FisherSSF.R (in Rscripts and Output folders) for examples.

sl_
b1>
72
38
765
52
93
72
.97
44

Mixed models

$f_i^u(s) \propto \exp(elev(s)\beta_i + popD(s)\gamma_i + forest(s)\tau_i)$

Further assume:

 $(\beta_i, \gamma_i, \tau_i) \sim N(\mu, \psi)$

Similar 2-step approach, but assume the regression parameters come from a common normal distribution.

Advantages:

- inference at individual- and population-level with single model
- can "borrow strength" across individuals when estimating (β_{1i},..., β_{2i})
- But...more assumptions, added complexity

One Step: Random Effects

Random effects were proposed for RSFs over 10 years ago¹

 Majority of studies (80 % since 2016) only include random intercept and no random slope(s).

Fitting Mixed RSFs and SSFs

Search

New Results

Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation

Stefanie Muff, Ø Johannes Signer, Ø John Fieberg doi: https://doi.org/10.1101/411801

RSFs: Random Intercept-Only Models

- 1. Intercept in RSFs is not of interest and depends heavily on the sampling ratio of used versus available points
- 2. Cannot (by definition) account for among-animal variation in the regression slopes (i.e., functional responses)!
- 3. SEs will be too small, particularly with lots of observations for each animal $^{\rm 5}$

¹Gillies et al. "Application of random effects to the study of resource selection by animals." Journal of Animal Ecology 75.4 (2006): 887-898.

⁵Schielzeth, H. and W. Forstmeier (2009). Conclusions beyond support: Overconfident estimates in mixed models. Behavioral Ecology 20, 416-420.

Example: Goat RSFs⁶

⁶Lele & Keim, (2006) Weighted distributions and estimation of resource selection probability functions. Ecology 87, 3021–3028.

Mixed SSF Trick

Reformulation SSFs as a Poisson model with stratum-specific intercepts $\alpha_{nt}{}^5$

$$E(y_{nti}) = \mu_{nti} = \exp(\mu + \alpha_{nt} + \beta^T \mathbf{x}_{nti} + \mathbf{u}^T \mathbf{z}_{nti}), \quad y_{nti} | \mathbf{u}_n \sim Po(\mu_{nti})$$

- Same likelihood kernel as condition logistic regression likelihood, same β̂, same SE(β̂)
- But, then lots of intercepts to estimate
- Trick: α_{nt} ~ N(0, 10⁶) (avoids shrinkage and explicit estimation)

SSFs: Mixed Effects

Conditional logistic regression with random effects is computationally prohibitive for most data sets:

$$\mathsf{P}(y_{ntj} = 1 \mid \boldsymbol{x}_{ntj}) = \pi_{ntj} = \frac{\exp(\beta^\top \boldsymbol{x}_{ntj} + \boldsymbol{u}_n^\top \boldsymbol{z}_{ntj})}{\sum_i \exp(\beta^\top \boldsymbol{x}_{ntj} + \boldsymbol{u}_n^\top \boldsymbol{z}_{ntj})}, \quad y_{ntj} \mid \boldsymbol{u}_n \sim \mathsf{B}(\pi_{ntj})$$

- Must integrate, numerically, over the distribution of un (no closed-formed solution)
- coxme for small numbers of strata
- Alternatively, can use TwoStepCLogit::Ts.estim(), a two-step approach

SSF: Otter Example

- 9 otter
- 4167 used locations
- 41670 total locations
- predictors: habitat type (REST1 if rest-water of a reservoir, STAU1 if in a reservoir), river width

Slope estimates	β_{STAU}	β_{REST}	β Width	
Fixed effects mod	els			
clogit	-0.07 (0.07)	-0.38 (0.10)	0.16 (0.04)	
cPois (INLA)	-0.07 (0.07)	-0.38 (0.10)	0.16 (0.04)	
cPois (glmmTMB)	-0.07 (0.07)	-0.38 (0.10)	0.16 (0.04)	

Weinberger, I. C., S. Muff, A. Kranz, and F. Bontadina (2016). Flexible habitat selection paves the way for a recovery of otter populations in the European Alps. Biological Conservation 199, 88–95.

⁵Armstrong et al. "Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis." BMC medical research methodology 14.1 (2014): 122.

Mixed Effects

Summary: Methods for Inference

- 1. Fit models to pooled data, ignoring the fact that we have repeated measures
 - Use a cluster-level bootstrap or GEEs for inference
 - Can be reasonable if n_i is similar among animals and you are interested in population-level habitat selection patterns
- 2. Fit models to individual animals and treat the estimates as data (two-step approach)
 - Provides a simple way to explore among-animal variability
- 3. Mixed models, hierarchical models, random effect models: allow parameters to vary by animal
 - Similar to [2], but accomplish in 1-step

Practicals

Will see how to fit mixed RSFs and mixed SSFs using gImmTMB and $\ensuremath{\mathsf{INLA}}$

- fisher data
- your own data?